Population persistence under advection-diffusion in river networks.

نویسنده

  • Jorge M Ramirez
چکیده

An integro-differential equation on a tree graph is used to model the time evolution and spatial distribution of a population of organisms in a river network. Individual organisms become mobile at a constant rate, and disperse according to an advection-diffusion process with coefficients that are constant on the edges of the graph. Appropriate boundary conditions are imposed at the outlet and upstream nodes of the river network. The local rates of population growth/decay and that by which the organisms become mobile, are assumed constant in time and space. Imminent extinction of the population is understood as the situation whereby the zero solution to the integro-differential equation is stable. Lower and upper bounds for the eigenvalues of the dispersion operator, and related Sturm-Liouville problems are found. The analysis yields sufficient conditions for imminent extinction and/or persistence in terms of the values of water velocity, channel length, cross-sectional area and diffusivity throughout the river network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

R0 Analysis of a Spatiotemporal Model for a Stream Population

Water resources worldwide require management to meet industrial, agricultural, and urban consumption needs. Management actions change the natural flow regime, which impacts the river ecosystem. Water managers are tasked with meeting water needs while mitigating ecosystem impacts. We develop process-oriented advection-diffusion-reaction equations that couple hydraulic flow to population growth, ...

متن کامل

Analysis of a Spatiotemporal Model for a Stream Population ∗

Water resources worldwide require management to meet industrial, agricultural, and urban consumption needs. Management actions change the natural flow regime, which impacts the river ecosystem. Water managers are tasked with meeting water needs while mitigating ecosystem impacts. We develop process-oriented advection-diffusion-reaction equations that couple hydraulic flow to population growth, ...

متن کامل

Population growth and persistence in a heterogeneous environment: the role of diffusion and advection

The spatio-temporal dynamics of a population present one of the most fascinating aspects and challenges for ecological modelling. In this article we review some simple mathematical models, based on one dimensional reaction-diffusion-advection equations, for the growth of a population on a heterogeneous habitat. Considering a number of models of increasing complexity we investigate the often con...

متن کامل

A Hybrid Continuous/Discrete-Time Model for Invasion Dynamics of Zebra Mussels in Rivers

While some species spread upstream in river environments, not all invasive species are successful in spreading upriver. Here the dynamics of unidirectional water flow found in rivers can play a role in determining invasion success. We develop a continuous-discrete hybrid benthic-drift population model to describe the dynamics of invasive freshwater mussels in rivers. In the model, a reaction-ad...

متن کامل

Checking the Sensitivity of Solute Advection- Dispersion Model to Reaction Coefficients and River Hydraulic Properties in the Process of Dissolved Oxygen Simulation

Nowadays, environmental pollutions especially water pollution is increasingly developing. One of the problems of entering the pollutants to rivers is reduction in the concentration of river dissolved oxygen. In order to manage the water resources, amount of dissolved oxygen should be predicted. This study presents a novel equation for simulating the concentration of river dissolved oxygen by ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of mathematical biology

دوره 65 5  شماره 

صفحات  -

تاریخ انتشار 2012